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Simulation of shifted and asymmetric hydrogen line profiles
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Abstract. A theoretical approach to spectral line shapes of hydrogen-like emitters in plasmas has been
developed. Within this approach, the line core as well as the line wings are well described. Besides the ion
dynamics, shift and asymmetry are also included. The time evolution of the ionic microfield is taken into
account by means of a simulation technique. Shift and asymmetry of the lines result from the inclusion of
the electronic contributions to the line shift as well as from the inhomogeneities of the ionic microfield and
the quadratic Stark effect. Calculated line profiles according to the presented formalism are given for the
Lyman-α line and the Lyman-β line of atomic hydrogen in an argon plasma, and compared with results
of other theories and corresponding experiments.

PACS. 52.25.Qt Emission, absorption, and scattering of ultraviolet radiation – 32.70.Jz Line shapes,
widths, and shifts

1 Introduction

The interaction between hydrogen radiators in dense plas-
mas and the microfield of the plasma ions leads to a broad-
ening of the hydrogen spectral lines caused by the splitting
of the atomic levels due to the linear Stark effect, as well
as to shift and asymmetry as a consequence of the interac-
tion between the atomic quadrupole moment and inhomo-
geneities of the ionic microfield, the so called quadrupole
effect, and higher order effects, e.g. the quadratic Stark
effect. Here, the quadrupole effect causes different shifts
of the Stark components which gives the dominant contri-
bution to the line asymmetry [1].

For small deviations ∆ω from the unperturbed transi-
tion frequency, the times τ ∼ 1/∆ω to be considered are
long enough to resolve the motion of the plasma ions. For
very narrow lines and near the line centres effects due to
the ion motion have to be considered. Experimental in-
vestigations of the line centres of the first Lyman lines by
Grützmacher and Wende [2,3] demonstrated the impor-
tance of inclusion of the dynamics of the ionic microfield.
It leads to an additional large contribution to the broaden-
ing of spectral lines for lines with a central Stark compo-
nent, e.g. the Lyman-α line, or to a decrease in the depth
of the dip in the line centre for lines without a central
Stark component, e.g. the Lyman-β line. Considering sev-
eral theoretical approaches, the widths of line shapes cal-
culated by means of computer simulation techniques show
the best agreement with experimental data [4,5], whereas

a e-mail: stefans@darss.mpg.uni-rostock.de

calculations without inclusion of the ion dynamics [6,7]
or the description of the ion dynamics by several analytic
models [8–10] lead to larger discrepancies between exper-
imental and theoretical line profiles near the line centre.
On the other hand, using simulation techniques, shift and
asymmetry of the spectral lines have been neglected so
far [4,5]. Shifted and asymmetric profiles have been cal-
culated only in the frame of analytical descriptions of the
plasma ions [6,9,11].

The aim of this work is to improve line profiles achieved
by computer simulations, including shift and asymme-
try. In the simulation, the ions are considered as inde-
pendent particles moving along straight trajectories. The
shift and asymmetry due to the ionic quadrupole effect
has been calculated by means of a field dependent, aver-
aged field gradient as introduced by Chandrasekhar and
von Neumann [12] and extended to screened particles by
Halenka [13].

Apart from the broadening, shift and asymmetry due
to the plasma ions, in our calculations the electronic broa-
dening and shift are included. They are calculated within
a quantum statistical approach using a Green’s functions
technique [14,15].

Furthermore, the so called “trivial” asymmetry and
the Doppler broadening due to the motion of the radiators
are taken into account.

To test the developed theory, the shapes of the first
two Lyman lines are calculated for the plasma parameters
chosen in references [2,3] and compared to experimental
data.
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2 Theory

In our calculations, we have taken into account the line
broadening, shift and asymmetry due to the interaction
between a radiating atom and the surrounding plasma
particles (so called pressure broadening), the trivial asym-
metry, as well as the line broadening due to the mo-
tion of the radiators (Doppler broadening). Here, we have
calculated first a profile Ipr(∆ω) for a radiator at rest,
where only the pressure broadening is taken into account.
The full line shape I(∆ω) is yielded by including the
Doppler broadening via convolution of Ipr(∆ω) with the
Maxwellian velocity distribution function.

For a fixed radiating hydrogen atom in a plasma en-
vironment, the shape of an emitted spectral line is given
by [16]

Ipr(∆ω) ∝ exp
(
− h̄∆ω
kBT

)(
1 +

∆ω

ω(0)

)4

L(∆ω)

with the unperturbed transition frequency ω(0) = (E(0)
i −

E
(0)
f )/h̄ and ∆ω = ω − ω(0). Here, L(∆ω) includes the

effects of shift, broadening and asymmetry due to the
interaction between the radiating atom and the plasma
particles. The factor apart from L(∆ω) gives the contri-
bution to the asymmetry due to the occupation density of
the atomic states of the upper level as well as the trivial
asymmetry.

For spectral lines of a dipole transition, L(∆ω) is given
by the Laplace transform

L(∆ω) = Re
1
π

∞∫
0

dt ei∆ωtC(t)

of the dipole-autocorrelation function

C(t) = e2
∑

i,i′ ,f,f ′

ρi〈i|r|f〉〈f
′ |r|i′〉〈i′ |〈f |〈U(t)〉av|f

′〉|i〉 ·

(1)

In this formula, 〈...〉av denotes the ensemble average over
all radiating atoms in the plasma, which are influenced by
different time dependent microfields E(t) during the time
interval t. This average may be performed as an average
over all possible microfields, acting on a representative ra-
diator. d = −er is the dipole operator of the atomic transi-
tion, and U(t) = U+

f (t)Ui(t) signs the product of the time
evolution operators for the states of the initial levels (i)
and the final levels (f), respectively. Using the usual no-
quenching approximation, i.e. performing the summation
only over states with the principal quantum number of the
upper or lower level of the considered atomic transition,
the time evolution operator U(t) satisfies the equation of
motion

d
dt
〈i′ |〈f |U(t)|f ′〉|i〉 =

− i
h̄

∑
i1,f1

〈i′ |〈f1|∆V (t)|f ′〉|i1〉〈i1|〈f |U(t)|f1〉|i〉 (2)

with the difference between the radiator-plasma interac-
tion potentials for the initial and final states

∆V (t) = Vi(t)− V +
f (t) + iΓV

if .

The potentials Vi(t) and Vf (t), containing an electronic
self energy and an explicit time dependent ionic potential

Vn(t) = V ion
n (t) +Σe

n, n = i, f,

act only in the space of the initial states |i〉 and final states
|f〉, respectively. The term ΓV

if is the vertex correction to
the electronic broadening, describing the coupling between
the initial and the final level. It vanishes in the case of the
Lyman lines [11].

The electronic contribution may be written as a self
energy, calculated within a second-order Born approxima-
tion [14,15],

Σe
n(En/h̄+∆ω, β) = − 1

e2

∫
d3q

(2π)3
V (q)

∑
α

|M (0)
nα (q)|2

×
∞∫
−∞

dω
π

(1 + nB(ω))
Imε−1(q, ω)

E
(0)
n − Eα(β) + h̄∆ω − h̄(ω + i0)

·

Here, V (q) is the Coulomb potential, ε(q, ω) the dielectric
function in random phase approximation, and nB(ω) the
Bose function. β = E/E0 is the normalized field strength
with the Holtsmark normal field strength [17]

E0 =
e

2ε0

(
4n
15

) 2
3

· (3)

In this paper, the frequency dependence of the self energy
as well as the field strength dependence of the energies Eα
are neglected, i.e.

∆ω = 0 and Eα(β) −→ Eα(β)
∣∣
β=0

= E(0)
α ,

corresponding to the impact approximation [16,18]. This
is reasonable for the narrow lines considered here, where
ion dynamics play an important role.

To calculate the ionic contribution, the effective
Hamiltonian

V ion(t) = er ·E(t)− 1
2

∑
ij

αijEi(t)Ej(t)

− 1
6

∑
ij

Qij〈Eij〉E(t) (4)

has been used. The first term is the linear Stark effect
with the time dependent ionic microfield E(t) and the
atomic dipole operator d = −er. The second term is the
quadratic Stark effect with the symmetric tensor of
the atomic dipole polarisability αij . The matrix elements
of this contribution are calculated using an expansion of
the wave function in wave function which are defined in a
coordinate system with the positive z-axis being parallel
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to the time dependent microfield E(t) in every time
step, i.e.∑
ij

〈nl1m1|αij |nl2m2〉Ei(t)Ej(t) =
∑
m

D(l1)
m1m(0, ΘE, ϕE)

× 〈nl1m|αzzE2(t)|nl2m〉D(l2)
m,m2

(−ϕE,−ΘE, 0).

Here,

D
(l)

m′m
(α, β, γ) =

〈lm′ | exp
(

iγ
h̄
Jz

)
exp

(
iβ
h̄
Jy

)
exp

(
iα
h̄
Jz

)
|lm〉

[19] are the matrix elements of finite rotations expanding
the spherical wave functions |lm〉 defined in the coordinate
system Σ in spherical wave functions |lm′〉 defined in the
coordinate system Σ

′
, where Σ

′
is rotated by the Euler

angles α, β, γ compared to Σ. ϕE and ΘE are the field
angles in our fixed coordinate system Σ

′
. In this equation,

the matrix elements of αzz are represented by

〈nl1m|αzz|nl2m〉 =∑
n1n2

〈nl1m|n1n2m〉αzz,n1n2m〈n1n2m|nl2m〉

with the hydrogen wave functions |n1n2m〉 calculated in
parabolic coordinates [20]. n1, n2 are the parabolic quan-
tum numbers, and m is the magnetic quantum number,
being related to the principal quantum number n by

n = n1 + n2 + |m|+ 1.

The resulting expressions for the dipole polarisability read

αzz,n1n2m=
n4

8
(
17n2−3(n1−n2)2−9m2 + 19

)
4πε0a

3
B.

The last term in equation (4) describes the interaction
between the atomic quadrupole moment and the inhomo-
geneities of the electric field. Here, Qij = −e(3rirj−δijr2)
is the atomic quadrupole operator, and

Eij =
∂Ei(R)
∂Rj

− 1
3
δij∇ ·E(R)

∣∣∣∣∣
R=0

is a traceless tensor, which in the following is called the
field gradient. For a Debye-screened electric field, it is
given by [13]

Eij = −
∑
a

qa
4πε0R3

a

e−
Ra
rD

×
(

1 +
Ra
rD

+
R2
a

3r2
D

)(
3
Ra,iRa,j
R2
a

− δij
)

with the Debye screening length rD = (ε0kBT/nee
2)1/2.

From that, the averaged field gradient for a given
microfield [13]

〈Eij〉E = − 5√
32π

E0

R0
Bρ(β)Aij(E/E)

is found, where Bρ(β) is the normalized averaged field
gradient, being a generalization of the function B(β) of
Chandrasekhar and von Neumann [12] within the
Baranger-Mozer limit [21,22]. R0 is the next neighbour
distance, which is related to the Holtsmark normal field
strength (3) by E0 = e/(4πε0R

2
0), and ρ = R0/rD is a

screening parameter. The dependence of 〈Eij〉E on the di-
rection of the field E is given by the coefficients

Aij(E/E) = 3
EiEj
E2

− δij , i, j = 1, 2, 3.

3 Simulation procedure

The dipole-autocorrelation function C(t) (1) has been
determined by solving the equation of motion (2)
numerically with simulated ionic microfields, using a
Runge-Kutta-Merson method [23]. To generate the time
dependent microfields, we have simulated the motion of
1000 test ions, neglecting any correlation between the par-
ticles, so that the ions are moving along straight trajec-
tories. For the simulation volume, we have chosen a cubic
box with an edge length l = 10/n1/3

e . The ions produce
Debye-screened electric fields. Only the plasma electrons
are assumed to contribute to the screening. Contributions
to the electric field due to ions outside of the box have been
neglected. The ion velocities satisfy the Maxwellian veloc-
ity distribution. An ion, leaving the simulation volume,
is replaced by a new one according to periodic boundary
conditions at the opposite of the box, moving with the
same velocity and in the same direction [24].

The radiating atom is fixed in the centre of the box. To
reproduce the relative motion of a radiator-perturber pair,
we have used the so called µ-ion model, i.e., in the veloc-
ity distribution, the ion mass is replaced by the reduced
radiator-perturber-mass µ.

At the begin of the simulation procedure, the ions are
randomly distributed, where the correlation between the
ions is completely neglected. This seems to be meaning-
ful, because this correlation becomes lost after the aver-
aged time for one ion impact [4,5]. The initial values for
the normalized field strength β = E/E0 are situated be-
tween 0 and βmax, where βmax = 100 for the Lyman-α
line, and βmax = 40 for the Lyman-β line. To get initial
field strengths distributed over the whole range, the range
has been divided into domains ∆β [25] with ∆β = 0.1 for
β ≤ 10 and ∆β = 0.5 for β ≥ 10. For every domain, 10 ini-
tial configurations were chosen. The large values of βmax

are found to be necessary to reproduce the line asymme-
try. In particular, a βmax, being too small, as in the case
of Lyman-α profiles with static ions, lead to large discrep-
ancies between asymmetries of the simulated profiles and
that calculated within the method from reference [11].

The minimum distance between the radiating atom
and the surface of the simulation box is Rs = 5/n1/3

e .
Under the plasma conditions assumed for the line shape
calculations, this is larger than 3 Debye screening lengths
rD, suggested in reference [5].
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Table 1. Full widths at half maximum (FWHM) for Lyman-α profiles in Å for the conditions of the experiment of Grützmacher
and Wende [2]. The hydrogen radiators were in an argon plasma. All profiles include Stark broadening as well as Doppler
broadening. The electronic shifts and widths corresponding to the columns no. 4, 5, 6, and 8 are calculated using the method of
Günter and Könies (GK) according to reference [15]. Halenka et al. [5] have calculated profiles which are only broadened, but
not shifted and asymmetric. They have simulated the electronic microfield as well as the ionic one.

ne T experiment static ions static ions MMM dyn. ions simulation dyn. ions simulation
[1023 m−3] [K] (GK) (simulation) Halenka et al. this work

1.0 12700 0.23 ± 0.02 0.144 0.144 0.183 0.221 0.211
2.0 13200 0.30 ± 0.02 0.172 0.176 0.234 0.287 0.278
3.0 13200 0.36 ± 0.02 0.207 0.209 0.286 0.358 0.332
4.0 14000 0.42 ± 0.02 0.241 0.242 0.337 0.426 0.387

0.0 1.0 2.0 3.0 4.0
t/t0

−0.5

0.0

0.5

1.0

1.5

<
β(

t)
>

| β/β

simulation, β=1.2
Könies et al., β=1.2
simulation, β=4.7
Könies et al., β=4.7

Fig. 1. Simulated conditional covariance (Eq. (5)) compared
to that calculated with the approach of Könies et al. [28]. Here,
the screening parameter is ρ = R0/rD = 0.612, corresponding
to T = 10 000 K and ne = 1023 m−3.

The initial fields satisfy the field distribution func-
tion W (E) = 4πW (E) for Debye-screened, uncorrelated
ions, and the simulated microfields reproduce the field-
autocorrelation function for a given initial field strength,
the so called conditional covariance [26,27]

γ(t|E) =
1
E2

∫
d3F

F ·E W2(F, t; E, 0)
W (E)

, (5)

calculated by Könies et al. [28]. They also have calculated
this property within the µ-ion model for Debye-screened,
uncorrelated particles with the charge e. In this formula,
W2(F, t; E, 0) is the two-time field distribution function.
Figure 1 shows our simulated conditional covariance com-
pared to that of Könies et al., plotted over the normalized
time τ = t/t0 with

t0 =
√

µ

2kBT
R0.

The conditional covariance depends only on the parame-
ters ρ = R0/rD and β = E/E0, as shown in [28]. We have

chosen ρ = 0.612, according to a plasma with a density
n = 1023 m−3 and a temperature T = 10 000 K. Our initial
fields were β = 1.2 and β = 4.7. For this work, it has been
simulated with 50 000 initial configurations. Despite this
high number, the fluctuations are much larger than those
of the corresponding dipole-autocorrelation function C(t).

4 Results

Within the formalism outlined in the previous sections,
full line profiles I(∆λ) of the Lyman-α line and the
Lyman-β line for atomic hydrogen are calculated, where
pressure broadening and trivial asymmetry, as well as
Doppler broadening are included.∆λ is the deviation from
the wave length of the radiation of an unperturbed atomic
transition λ(0) = 2πch̄/(E(0)

i −E
(0)
f ). From these profiles,

the width, shift and asymmetry were determined. Here,
the centre-of-mass shift

∆cm =

∆s∫
−∆s

d(∆λ)∆λI(∆λ)

∆s∫
−∆s

d(∆λ) I(∆λ)
(6)

and the asymmetry parameter

A(∆λ) =
Ired(∆λ) − Iblue(∆λ)
Ired(∆λ) + Iblue(∆λ)

, (7)

with Ired(∆λ) = I(|∆λ|) and Iblue(∆λ) = I(−|∆λ|) were
determined, according to reference [3]. The shift ∆cm has
been calculated only for the Lyman-α profiles, where we
have chosen ∆s = 1.5 Å according to reference [15].

To allow comparisons with experimental results, the
plasma conditions from the experiments of Grützmacher
and Wende in references [2,29], and [3], respectively, were
chosen.

Because of the small width of the Lyman-α line, the
whole line profile is determined by the dynamics of the
ionic microfield. In Table 1, the full width at half maxi-
mum (FWHM) of the Lyman-α profiles is given for sev-
eral plasma conditions and yielded by different theoreti-
cal approaches, compared to those of the experiment [2].
The neglect of the dynamics of the ionic microfield leads
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Table 2. Centre-of-mass shift ∆cm from equation (6) of the Lyman-α line for ne = 2× 1023 m−3 and T = 13 200 K according
to the plasma conditions of the second line in Table 1. The integration interval was [−∆s,∆s] with ∆s = 1.5 Å, according to
reference [11]. The experimental value is from reference [29].

method experiment static ions static ions MMM dyn. ions simulation

(GK) (simulation) this work

shift [10−3 Å] (5.8± 0.6) 3.35 3.73 4.09 7.11

0.0 0.5 1.0 1.5 2.0
∆λ [Å]

−0.04

−0.02

0.00

0.02

0.04

0.06

A
(∆

λ)

static ions (KG)
static ions (simulation)
dyn. ions (MMM)
dyn. ions (simulation)

Fig. 2. Asymmetry A(∆λ) of calculated Lyman-α profiles ac-
cording to equation (7) of hydrogen atoms in an argon plasma
of ne = 2×1023 m−3 and T = 13 200 K according to the second
line in Table 1. The asymmetry has been calculated regarding
to the position of the maximum.

to a strong underestimation of the width of the Lyman-α
line. The use of several analytical models and approaches
have yielded a better agreement between theoretical and
experimental line shapes. For comparison, we have chosen
the width of the profiles, where the ion dynamics are taken
into account by a stochastic model, the model-microfield
method [26,27,30]. But all these approaches still underes-
timate the effects due to the dynamic ionic microfield. Up
to now, profiles yielded from simulation techniques, show
the best agreement with experimental line shapes with
respect to the width as a consequence of the most realis-
tic description of the ionic microfield. Here, our approach
leads to a slight underestimation of the width. This un-
derestimation is probably a consequence of the use of elec-
tronic widths in impact approximation. Halenka et al. [5]
have compared the widths of the Lyman-α profiles, where
both the ionic and the electronic microfield has been sim-
ulated, with others, where the electronic widths were cal-
culated in impact approximation. Using the first method,
the widths of the resulting profiles agree well with those
of the measured profiles. The widths of the profiles, cal-
culated using the second method, were about 5% smaller.
The inclusion of the ion dynamics within our simulation
technique results in an increase of the red shift of the
line shapes, as shown in Table 2, and a decrease of the
line asymmetry, seen in Figure 2, compared to that of

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
∆λ[Å]

0

50

100

150

200

I(
∆λ

)

experiment
static ions (GK)
static ions (simulation)
MMM
dyn. ions (simulation)

Fig. 3. Profiles of the Lyman-β line of hydrogen for T =
16 000 K and ne = 2× 1023 m−3 according to Table 3.

the static ion profiles. Here, only theoretical curves are
plotted because no experimental data were available.
Both effects may be explained by the suppression of the
quadrupole effect due to the time evolution of the ionic
microfield, particularly due to rotations of the microfield.
These rotations of the ionic microfield have a stronger in-
fluence on the quadrupole effect than on the quadratic
Stark shifts. This results in an increase of the red shift
of the line profiles, since the field rotations decrease the
shifts resulting from both effects. The fluctuations in the
asymmetry of the simulated profile in Figure 2 are due
to numerical difficulties. The strong increase in the line
wings are a consequence of the decrease of the expression
Ired(∆ω) + Iblue(∆ω) in the denominator of the asym-
metry parameter A(∆ω), which becomes small for wave
length deviations larger than the half width at half max-
imum (HWHM) ∆λ1/2. Note, that ∆λ1/2 ∼ 0.1 Å for
ne = 2× 1023 m−3 and T = 13 200 K.

The profile and the asymmetry of the Lyman-β line
are only modified by the ion dynamics near the line cen-
tre. Figure 3 shows the central region of a Lyman-β profile
calculated within our simulation technique compared to a
measured line shape of the experiment of Grützmacher
and Wende, and to other theoretical line shapes. For
the calculations, we have assumed an Ar+-plasma with
ne = 2 × 1023 m−3 and T = 16 000 K, being the con-
ditions of Grützmacher’s and Wende’s experiment [3]. All
profiles agree in the line wing, where the intensity is mostly
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Table 3. Depth of the central dip of the Lyman-β line. The experimental profile is from reference [3], the profile with static
ions is calculated using the method of Günter and Könies (GK) from references [11,15]. The simulated profiles were calculated
using the simulation technique presented in this work. All theoretical profiles have been calculated using the Hamiltonian of
reference [11].

method experiment static ions static ions MMM dyn. ions simulation

(GK) (simulation) (this work)

depth of the dip 21.9% 43.6% 43.6% 29.2% 22.7%

0.0 0.5 1.0 1.5 2.0
∆λ[Å]

−0.10

−0.05

0.00

0.05

A
(∆

λ)

experiment
static ions (GK)
static ions (simulation)
MMM
dyn. ions (simulation)

Fig. 4. Asymmetry A(∆λ) of the Lyman-β profiles over the
wave length deviation according to Table 3. The profiles have
a full width at half maximum (FWHM) of 1.0 Å. The dotted
area indicates the range where the asymmetry curves of the
line profiles yielded in the experiment from reference [3], for
ne = (1.2 ... 3.0) × 1023 m−3 and T = (12 700 ... 16 000) K are
located.

determined by the static Stark splitting. In contrast, the
different ways to include the dynamics of the ionic mi-
crofield in the calculations lead to significant differences
between the profiles near the line centre. Especially, the
depth of the central dip depends strongly on the ion dy-
namics, as shown in Table 3. Here, the inclusion of the
ion dynamics within the simulation technique lead to an
excellent agreement to the dip-depth of the measured line
shape. The asymmetry curves A(∆λ) of the line shapes,
shown in Figure 4, have a similiar behaviour. The po-
sitions ∆λ0 of the crossover points, where Ired(∆λ0) =
Iblue(∆λ0), are close to that of the measured profile. For
wave length deviations ∆λ > ∆λ0, the asymmetry curves
of all calculated profiles are inside the gray area, where
the asymmetry curves of all Lyman-β profiles, measured
by Grützmacher and Wende for ne = (1.2...3.0)×1023 m−3

and T = (12 700...16 000) K [3], are located. The fluctu-
ations are again due to numerical uncertainties, but are
much smaller compared to those of the Lyman-α line since
the intensity in the wings of the Lyman-β line is much
higher. The inclusion of ion dynamics in the line shape
calculations leads to a better agreement between the the-
oretical and experiamental asymmetry curves, where the
best agreement is obtained by means of our simulation
technique due to the most realistic description of the dy-
namic ionic microfield.

5 Conclusions

For the plasma parameters of the experiments described
in [2,3,29], line profiles of the Lyman-α and Lyman-β line
of atomic hydrogen including ion dynamics as well as shift
and asymmetry have been calculated. The time evolu-
tion of the ionic microfield has been taken into account
within a simulation technique. The use of the simulation
leads to a much better agreement between experimental
and theoretical line profiles, especially in the line centre,
compared to all other theoretical approaches. Shift and
asymmetry have been reached by means of an effective
Hamiltonian in the equation of motion (2) for the time
evolution operator U(t), allowing the calculation of shift
and asymmetry while using the no-quenching approxima-
tion in the line shape calculations. Apart from the usual
linear Stark effect depending on the dynamic ionic mi-
crofield, and leading to the ionic line broadening, this
Hamiltonian contains an electronic self energy in impact
approximation, contributing to the line broadening and
shift, as well as explicit expressions for the quadrupole ef-
fect and the quadratic Stark effect of the ionic microfield,
giving rise to the ionic shift and asymmetry.

We thank G. Röpke for helpful discussions. This work has been
supported by the Sonderforschungsbereich 198 “Kinetik par-
tiell ionisierter Plasmen”.
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